Gen Phys:

- Get out notebook and pen/pencil
- Open your notebook to the notes section
- Leave all other materials in the cubby in front of your desk.

Got Grit?

GRIT

The raw endurance, perseverance and passion that
keep you going despite obstacles.

Lesson 2

Invariant Principles for Products and Quotients

Objective:
Use the invariant principles for products and quotients.

Invariant Principle for Multiplication

$$
4 \times 5=20
$$

Invariant Principle for Multiplication

$$
4 \times 5=20
$$

$\frac{4}{2}$ rows and (5-2) columns

2 rows and 10 columns

$$
2 \times 10=20
$$

Invariant Principle for Multiplication

4 rows and 5 columns 2 rows and 10 columns
$4 \times 5=20$
$2 \times 10=20$

Invariant Principle for Multiplication

Divide the number of rows by 2 and multiply the number of columns by 2 .
$\frac{4}{2} \times(5 \cdot 2)=20 \quad$ The product remains the same.

General Rule: $\quad x y=\left(\frac{x}{z}\right)(y z)$

If you divide one factor by a number and multiply the other factor by the same number, the product remains the same.

Invariant Principle for Division

$$
\frac{20}{4}=5
$$

If 20 is divided into 4 equal parts, each part will contain 5 .

Invariant Principle for Division

$$
\frac{20}{4}=5
$$

If the number of markers is divided by 2 and the number of parts is also divided by 2 , then each part will still contain 5 .

That is, if $\frac{20}{2}$ is divided into $\frac{4}{2}$ equal parts, each part will contain 5.

$$
\frac{\frac{20}{2}}{\frac{4}{2}}=\frac{10}{2}=5
$$

Invariant Principle for Division

$$
\frac{20}{4}=\frac{\frac{20}{2}}{\frac{4}{2}} \quad \text { and } \quad \frac{20}{4}=\frac{(20) 2}{(4) 2}
$$

General Rule:

$$
\frac{x}{y}=\frac{\frac{x}{z}}{\frac{y}{z}} \quad \text { and } \quad \frac{x}{y}=\frac{x \cdot z}{y \cdot z}
$$

If both parts of a quotient are divided or multiplied by the same number, the quotient remains the same.

With the Invariant Principle for Multiplication, the changes are inverses.

$$
\begin{aligned}
& \quad x y=\left(\frac{x}{z}\right)(y \cdot z) \\
& \text { This is like addition: } x+y=(x-z)+(y+z)
\end{aligned}
$$

With the Invariant Principle for Division, the changes are the same.

$$
\frac{x}{y}=\frac{\frac{x}{z}}{\frac{y}{z}} \quad \text { and } \quad \frac{x}{y}=\frac{x \cdot z}{y \cdot z}
$$

This is like subtraction: $x-y=(x-z)-(y-z)$

$$
x-y=(x+z)-(y+z)
$$

Examples:

Application (Electricity): According to Ohm's law, the electric potential difference V in volts in a circuit is equal to the product of the current I in amps and the resistance R in ohms: $V=I R$. If the current in a circuit is 6 amps when the resistance is 21 ohms, calculate the current when the resistance is 7 ohms. Assume the voltage is constant.

Let $x=$ current in amps.

Set up an equation with a product on each side and solve the equation.

The product of I and R is constant.

$x=6 \cdot 3=18 \mathrm{amps}$

