Gen Phys:

- Get your notebook, pen/pencil, packet and worksheet from Friday All other materials in the cubby in front of your desk.
- Math Review test NEXT Friday!

Lesson 3

Solving Proportions

Objectives:
Compare the size of two fractions. Identify a proportion Solve a proportion.

If two fractions have the same denominators, then it is easy to see which one is larger: just compare their numerators.

$$
\frac{3}{7}<\frac{4}{7} \quad \text { because } 3<4
$$

If the denominators are different, we can use the cross product rule:
$\frac{a}{b}<\frac{c}{d} \quad$ if and only if $\quad a d<b c$.
$\frac{a}{b}=\frac{c}{d} \quad$ if and only if $a d=b c$.
$\frac{a}{b}>\frac{c}{d} \quad$ if and only if $a d>b c$.

Which is larger, $\frac{2}{3}$ or $\frac{5}{8} ?$

Which is larger, $\frac{2}{3}$ or $\frac{12}{18} ? \quad 18 \cdot 2=36 \quad 3 \cdot 12=36$
The cross products are both equal to 36 , so $\frac{2}{3}=\frac{12}{18}$.

The ratio of two numbers is found by dividing the first number by the second number.
For example, the ratio of 2 to 3 is $\frac{2}{3}$.
A proportion is an equation stating that two ratios (or fractions) are equivalent.
When we say that the fraction $\frac{2}{3}$ is equal to the fraction $\frac{12}{18}$, we are stating a proportion.

$$
\frac{2}{3}=\frac{12}{18} \text { is a proportion. }
$$

We can use the cross product rule to determine whether a pair of ratios forms a proportion.
Example: Do the ratios $\frac{3}{5}$ and $\frac{8}{13}$ form a proportion?

Since $39<40$, the ratios are not equal and they do not form a proportion.

When one of the numbers in a proportion is unknown, it can be found by using the cross product rule or the invariant principle for division.

Example: Solve the proportion

Since 20 divides 100, we can easily use the invariant principle for division.

Example: Solve the proportion

Since 3 does not divide 11, we will use the cross product rule.

$$
\begin{aligned}
11 x & =21 \\
x & =\frac{21}{11}
\end{aligned}
$$

Example: Find the value of y that makes $\frac{6}{7}$ and $\frac{18}{y+2}$ a proportion

We want to solve the proportion $\frac{6}{7}=\frac{18}{y+2}$.
Since 6 is easily related to 18 , we use the invariant principle for division.

$$
\begin{aligned}
\frac{6}{7}=\frac{18}{y+2} & 7 \cdot 3
\end{aligned}=y+2
$$

Application (Optics): If a luminous object is placed at a distance greater than the focal length away from a convex lens, then it will form an inverted image on the opposite side of the lens. The image distance d_{i} and height h_{i} are related to the object distance d_{o} and height h_{o} by the proportion

$$
\frac{d_{i}}{h_{i}}=-\frac{d_{\mathrm{o}}}{h_{\mathrm{o}}}
$$

If $d_{\mathrm{o}}=30 \mathrm{~cm}, h_{\mathrm{o}}=24 \mathrm{~cm}$, and $d_{i}=55 \mathrm{~cm}$, calculate the height of the image.

We want to solve the proportion $\frac{55}{h_{i}}=-\frac{30}{24} \Rightarrow \underbrace{\frac{55}{h_{i}}=\frac{-5}{4}}_{\times(-11)}$

$$
h_{i}=(4)(-11)=-44 \mathrm{~cm}
$$

