## Gen Phys

- Get out your notebook, pen/pencil and worksheet.
- Leave EVERYTHING else in your cubbies - Lab notebooks on the demo table on the way out.
- Test of Math Methods this Friday!


## Lesson 5

## Sums and Differences with Variables

Objective:
Solve sum and differences equations that contain a variable.

In solving an adding/subtracting equation, first identify the sum term and the two addends.

Recall the two basic patterns:


The minus sign here means the sum term is to its left.
[one addend] = [sum] - [other addend]


Recall the 8 equations that relate sums and differences, this time using variables.

s : the symmetric property of equality. If $a=b$, then $b=a$.
c: the commutative property of addition. $\quad a+b=b+a$
d: the definition of subtraction.

$$
a-b=c \quad \leftrightarrow \quad b+c=a
$$

$$
\begin{array}{ll}
z=x+y & z=y+x \\
x+y=z & y+x=z
\end{array}
$$

The sum equals one addend plus the other addend.

$$
\begin{array}{ll}
z-x=y & z-y=x \\
y=z-x & x=z-y
\end{array}
$$

One addend equals the sum minus the other addend.

The top four equations are explicit for the sum $z$.

The bottom four equations are explicit for one of the addends, $x$ or $y$.

Identify the sum term and the two addends in the equation.


The plus sign on the left side means $t$ on the right side is the sum.
So the 8 and the $m$ are the addends.
Now, solve the equation for $m$.
What kind of term is $m$ ? It is an addend.
Recall, one addend is the sum minus the other addend. So,


Identify the sum term and the two addends in the equation.

$$
s=m-4
$$

The minus sign on the right side means $m$ is the sum.
So the $s$ and the 4 are the addends.
Now, solve the equation for $m$.
What kind of term is $m$ ? It is the sum.
Recall, the sum equals one addend plus the other addend. That is,


Identify the sum term and the two addends in the equation.

$$
p-m=7
$$

The minus sign on the left side means $p$ is the sum.
So the $m$ and the 7 are the addends.
Now, solve the equation for $m$.
What kind of term is $m$ ? It is an addend.
Recall, one addend is the sum minus the other addend. So,


Application (Thermodynamics): The amount of heat $Q$ transferred to a system is equal to the change in internal energy $\Delta U$ of the system minus the work $W$ done on the system: $Q=\Delta U-W$.

Suppose we know $Q$ and $\Delta U$ and we want to calculate $W$.
Let's solve the equation for $W$.

$$
Q=\Delta U-W
$$



Which term is the sum? $\quad \Delta U$ So $Q$ and $W$ are the two addends.

$$
\text { [one addend] }=\text { [sum] }- \text { [other addend] }
$$

Remember:
[sum] = [one addend] + [other addend]
[one addend] = [sum] - [other addend]

$$
\begin{array}{ll}
\text { 1. } 41=x-3 n & \text { 4. } \frac{a}{b}=x-7 \\
\text { 2. } c y=3+x & \text { 5. } y+x=18 \\
\text { 3. } \frac{m}{n}-x=5 & \text { 6. } \quad 23-x=a
\end{array}
$$

## 1. $41=x-3 n$

2. $c y=3+x$

$$
\text { 3. } \frac{m}{n}-x=5
$$

$$
\text { 4. } \frac{a}{b}=x-7
$$

$$
\text { 5. } y+x=18
$$

6. $23-x=a$
