Gen Phys

- Pen/pencil, Notebook and worksheet
- Everything else in the cubbies
- Tomorrow: Practice test and math review
- Friday: Math for Physics TEST!!!!
*please let me know if you need alternate testing arrangements

Lesson 7

Mixed Equations

Objective: Solve equations involving various operations.

We can use the 3-number method to solve combinations of sums, differences, products, and quotients.

Recall:

$$
\begin{aligned}
& \text { [sum] }=\text { [one addend] }+ \text { [other addend] } \\
& \text { [one addend] }=[\text { sum }] ~-~[\text { other addend] } \\
& \text { [product] }=[\text { one factor] } \times \text { [other factor] } \\
& \text { [one factor] }=\frac{[\text { [product }]}{[\text { other factor] }]}
\end{aligned}
$$

Example:

Solve explicitly for each number in $\frac{28}{4}=13-6$. Do not compute.

There are two ways to view this equation.
As a sum and two addends: As a product and two factors:

$$
\left(\frac{28}{4}\right)=13-6
$$

$$
\frac{28}{4}=(13-6)
$$

The first way is easy to solve for 13 and 6 :

$$
13=\frac{28}{4}+6 \quad 6=13-\frac{28}{4}
$$

The second way is easy to solve for 28 and 4:

$$
28=(4)(13-6) \quad 4=\frac{28}{13-6}
$$

$$
\text { Solve for } x \text { in } \quad 18=2 x+y
$$

There is only one way to view this equation:
18 is the sum of the addends $2 x$ and y.
Since we cannot make x a term by itself, we first solve for the term containing x.

$$
(2 x)=(18)-(y)
$$

Now view the equation as a product and two factors:
This is the key step.

Solve for the factor x.

$$
x=\frac{18-y}{2}
$$

Solving Equations with Signed Numbers

Solve for x.

Group the terms so that -4 is
[sum] [addend] [addend] the sum term.

$$
(-4)-(6 x)=(11)
$$

Solve for the addend $6 x$.

$$
-4-6 x=11
$$

$$
6 x=(-4)-(11)
$$

Compute.
$6 x=-15$

Solve for the factor 6 and simplify.

$$
x=\frac{-15}{6}=-\frac{15}{6}=-\frac{5}{2}
$$

Suppose we rewrite the original equation as $\quad-6 x-4=11$.

Group the terms so that $-6 x$ is the sum term.

Solve for the sum $-6 x$.

$$
\begin{aligned}
& \text { [sum] [addend] [addend] } \\
& (-6 x)-(4)=(11) \\
& -6 x=(4)+(11) \\
& -6 x=15
\end{aligned}
$$

Now see x as a factor.

$$
(-6)(x)=15
$$

Solve for the factor and simplify.

$$
x=\frac{15}{-6}=-\frac{15}{6}=-\frac{5}{2}
$$

One more view of the same equation:

$$
\text { Solve for } x . \quad-4-6 x=11
$$

Rewrite the original equation as

$$
-4+(-6 x)=11
$$

[addend] [addend] [sum]

Now view 11 as the sum of the two addends -4 and $-6 x$.

Solve for the addend $-6 x$.

$$
-6 x=(11)-(-4)
$$

Compute.

$$
(-4)+(-6 x)=(11)
$$

$$
-6 x=15
$$

Now see x as a factor.

$$
(-6)(x)=15
$$

Solve for the factor and simplify. $\quad x=\frac{15}{-6}=-\frac{15}{6}=-\frac{5}{2}$
So no matter how you group the terms, the 3-number method still works.
What if x appears in more than one place?
We'll answer at that in the next lesson.

Application (Mechanics): The final velocity v of an object may be found from the equation $v=v_{0}+a t$, where v_{0} is the initial velocity, a is the acceleration, and t is the time.

Calculate the time it takes a bobsled to accelerate from $4 \mathrm{ft} / \mathrm{sec}$ to $69 \mathrm{ft} / \mathrm{sec}$ if the acceleration is $13 \mathrm{ft} / \mathrm{sec}^{2}$.

Solve the velocity equation for t.

Solve for the addend at .

$$
a t=v-v_{0} \quad[\mathrm{~A}]=[\mathrm{S}]-[\mathrm{A}]
$$

Now view the equation as a
[F] [F] [P] product [P] and two factors [F].

$$
(a)(t)=v-v_{0}
$$

Solve for the factor t.

$$
t=\frac{v-v_{0}}{a} \quad[\mathrm{~F}]=\frac{[\mathrm{P}]}{[\mathrm{F}]}
$$

Substitute $v=69, v_{0}=4$, and $a=13$.

$$
t=\frac{69-4}{13}=\frac{65}{13}=5 \mathrm{sec}
$$

