Gen Phys

- Pen/pencil, Notebook and worksheet
- Everything else in the cubbies
- Tomorrow: Practice test and math review

• Friday: Math for Physics TEST!!!!

*please let me know if you need alternate testing arrangements

Lesson 7

Mixed Equations

Objective:

Solve equations involving various operations.

We can use the 3-number method to solve combinations of sums, differences, products, and quotients.

Recall:

[sum] = [one addend] + [other addend][one addend] = [sum] - [other addend] $[product] = [one factor] \times [other factor]$ $[one factor] = \frac{[product]}{[other factor]}$

Example:

Solve explicitly for each number in $\frac{28}{4} = 13 - 6$. Do not compute.

There are two ways to view this equation.

As a sum and two addends: As a product and two factors:

 \sim

$$\left(\frac{28}{4}\right) = 13 - 6 \qquad \qquad \frac{28}{4} = \left(13 - 6\right)$$

The first way is easy to solve for 13 and 6:

$$13 = \frac{28}{4} + 6 \qquad 6 = 13 - \frac{28}{4}$$

The second way is easy to solve for 28 and 4:

$$28 = (4)(13-6) \qquad 4 = \frac{28}{13-6}$$

Solve for x in 18 = 2x + y.

There is only one way to view this equation:

18 is the sum of the addends 2x and y.

Since we cannot make x a term by itself, we first solve for the term containing x.

(2x) = (18) - (y)

Now view the equation as a product and two factors:

This is the key step.

Solve for the factor *x*.

$$x=\frac{18-y}{2}$$

(2)(x) = (18 - y)

Solving Equations with Signed Numbers

Solve for <i>x</i> .	-4 - 6x = 11
Group the terms so that -4 is the sum term.	[sum] [addend] [addend] (-4) - (6x) = (11)
Solve for the addend 6x.	6x = (-4) - (11)
Compute.	6x = -15
Solve for the factor 6 and simplify.	$x = \frac{-15}{6} = -\frac{15}{6} = -\frac{5}{2}$
Suppose we rewrite the original equation as $-6x - 4 = 11$.	
Group the terms so that $-6x$ is the sum term.	[sum] [addend] [addend] (-6x) - (4) = (11)
Solve for the sum $-6x$.	-6x = (4) + (11)
Compute.	-6x = 15
Now see x as a factor.	(-6)(x) = 15
Solve for the factor and simplify.	$x = \frac{15}{-6} = -\frac{15}{6} = -\frac{5}{2}$

One more view of the same equation:

So no matter how you group the terms, the 3-number method still works. What if *x* appears in more than one place?

We'll answer at that in the next lesson.

Application (Mechanics): The final velocity v of an object may be found from the equation $v = v_0 + at$, where v_0 is the initial velocity, a is the acceleration, and t is the time.

Calculate the time it takes a bobsled to accelerate from 4 ft/sec to 69 ft/sec if the acceleration is 13 ft/sec².

Solve the velocity equation for *t*.

View the equation as a sum [S] $\begin{bmatrix} S \\ v \end{bmatrix} = \begin{bmatrix} A \\ v_0 \end{bmatrix} = \begin{bmatrix} A \\ at \end{bmatrix}$ and two addends [A].

Solve for the addend *at*.

Now view the equation as a [F] [F] [P] product [P] and two factors [F]. $(a)(t) = v - v_0$

Solve for the factor t.

Substitute v = 69, $v_0 = 4$, and a = 13. $at = v - v_0$ [A] = [S] - [A] [F] [F] [P] $(a)(t) = v - v_0$ $t = \frac{v - v_0}{a}$ [F] = $\frac{[P]}{[F]}$ $t = \frac{69 - 4}{13} = \frac{65}{13} = 5 \text{ sec}$